Advanced Fully Convolutional Networks for Agricultural Field Boundary Detection
نویسندگان
چکیده
Accurate spatial information of agricultural fields is important for providing actionable to farmers, managers, and policymakers. On the other hand, automated detection field boundaries a challenging task due their small size, irregular shape use mixed-cropping systems making vaguely defined. In this paper, we propose strategy boundary based on fully convolutional network architecture called ResU-Net. The benefits model are two-fold: first, residual units ease training deep networks. Second, rich skip connections within could facilitate propagation, allowing us design networks with fewer parameters but better performance in comparison traditional U-Net model. An extensive experimental analysis performed over whole Denmark using Sentinel-2 images comparing several ResU-Net algorithms. presented results show that has an average F1 score 0.90 Jaccard coefficient 0.80 0.88 0.77.
منابع مشابه
Ridiculously Fast Shot Boundary Detection with Fully Convolutional Neural Networks
Shot boundary detection (SBD) is an important component of many video analysis tasks, such as action recognition, video indexing, summarization and editing. Previous work typically used a combination of low-level features like color histograms, in conjunction with simple models such as SVMs. Instead, we propose to learn shot detection end-to-end, from pixels to final shot boundaries. For traini...
متن کاملSaliency Detection with Recurrent Fully Convolutional Networks
• Employs three kind of low-level contrast features, including color, intensity and orientation, and the center prior knowledge to introduce saliency prior maps. • Train the RFCN with two stage training strategy, pre-training on the segmentation data set and fine-tuning on the saliency data set. The recurrent structure can incorporate the saliency prior maps into the CNNs with an end-to-end tra...
متن کاملDetection and Tracking of Liquids with Fully Convolutional Networks
Recent advances in AI and robotics have claimed many incredible results with deep learning, yet no work to date has applied deep learning to the problem of liquid perception and reasoning. In this paper, we apply fully-convolutional deep neural networks to the tasks of detecting and tracking liquids. We evaluate three models: a single-frame network, multi-frame network, and a LSTM recurrent net...
متن کاملR-FCN: Object Detection via Region-based Fully Convolutional Networks
We present region-based, fully convolutional networks for accurate and efficient object detection. In contrast to previous region-based detectors such as Fast/Faster R-CNN [7, 19] that apply a costly per-region subnetwork hundreds of times, our region-based detector is fully convolutional with almost all computation shared on the entire image. To achieve this goal, we propose position-sensitive...
متن کاملFully Convolutional Neural Networks for Crowd Segmentation
In this paper, we propose a fast fully convolutional neural network (FCNN) for crowd segmentation. By replacing the fully connected layers in CNN with 1 × 1 convolution kernels, FCNN takes whole images as inputs and directly outputs segmentation maps by one pass of forward propagation. It has the property of translation invariance like patch-by-patch scanning but with much lower computation cos...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Remote Sensing
سال: 2021
ISSN: ['2315-4632', '2315-4675']
DOI: https://doi.org/10.3390/rs13040722